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ON THE SELFOSCILLATORY MODES OF MOTION OF A GAS IN PIPES* 

A.L. NI 

One-dimensional, non-linear selfexcited oscillations of an ideal gas in 
pipes are studied. One end of the pipe is closed, and boundary conditions 
connecting in prescribed manner the incident and reflected Riemann 
invariants are specified at the other end. Periodic solutions containing 
shock waves are constructed. A relation connecting the amplitude and the 
period of the oscillatory motion of the gas is established. The solutions 
obtained are analysed numerically for stability. The investigations 
are based mainly on the results of /l-6/ where the forced resonant and 
subresonant oscillations of a gas in open a closed pipes wexe studied. 

In /l-4/ the equations of oscillations were derived using a method analogous to the 
Poincar&%ighthill method of deformed coordinates. The problem was reduced to finding the 
solutions of ordinary differential equations on the smooth segments, followed by the in- 
troduction of discontinuities based on special additional assumptions. In 15, 6/asequential 
approach to solving the class of problems in question was described, within whose framework 
the problem of discontinuities was solved correctly by analysing the evolution of the com- 
pression wave. 

The formulation of the boundary value problems in the present paper is related, to a 
known degree, to the analogous formulations in the investigations of motion of a gas in a 
Hartman generator where the flows are also oscillatory **.(**Areviewofsuchinvestigations is 
givenin:Dulov V.G. and Maksimov V.P. Thermoacousticsofsemiclosedvolumes.Preprint 28-86, 
Nwosibirsk, Inst. ~eo~t~calandAppliedMechan~cs, SiberianSection, Academyof Sciences Of the 
B8SR# &986&i We&&l ttse-the appreaeh v /s, W teen&&se theeeeil'-"~cBtta,-aK 
cumbersome derivations given in these papers will be omitted. The arguments concerning the 
applicability of the isentropic approximation and the possibility of neglecting the change 
in the Riemann invariants when the characteristics interact with the shock waves, alsoretain 
their validity in the case of the oscillations investigated here. 

1. Equations of motion. The equations of gas dynamics in their characteristic form 
and in the commonly accepted notation are 171 

where the following operators of differentiation along the characteristics C+,C-,C" 
are used: 

*Prikl.Matem.Mekhan.,51,5,807-813,1987 
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We shall consider the small amplitude waves a. As we said before, we can neglect the 
change in entropy in the shock waves , and regard the flow as isentropic. 

The equations of motion are reduced to the form (Jf are the Riemann invariants) 

($),=o, ($+o (p-w+-) 

We shall consider two types of boundary conditions. Let the right-hand end of the pipe 
(of length X) be closed u(X,t) = 0, and let a linear relation exist at its left-hand end 
between the perturbations of the incident and reflected RiemaM invariant (henceforth we shall 
denote the parameters of the unperturbed gas by a zero subscript) 

J+ (0, t) - Jo+ = v (1 + 6) IJ- (0, t) - Jo-l (1.1) 
v=tl, S<l 

When v = -i (case 11, the boundary condition formulated above reduces to the form 

24 (0, t) = -6 v- (0, t) - JO-l/2 

This is an analogue of the problem of the oscillations of a piston /l, 2, 5/ in which 
the shock wave in the flow survives a collision with the boundary. If v = +1 (case 2), 
then (1.1) can be rewritten thus: 

P (07 t) - PO = 26 v- (0, t) - J,llx 

This formulation is similar to the way of specifying the pressure /3, 6/. Here the shock 
wave is reflected from the boundary locally , in the form of a centered rarefaction wave. 

The boundary conditions (1.1) represent a special case of a wide class of the linear 
conditions of reflection, connecting the perturbations arising in the incident and reflected 
Riemann invariants, with entropy. They are characteristic for the formulations of the problems 
in studies of the stability of, forexample, detonation waves /8, 9/ or flows through nozzles 
/lo-12/. The shock and detonation waves, theJouguetplane, the cross-section of the nozzle 
exist, etc., can serve as the flow boundaries. 

In the present case conditions (1.1) can be regarded as the expression of the interaction 
of the flow within the pipe , with the external flow or with some construction. They are of 
a purely model character. 

bet us introduce the dimensionless coordinates usingthe formulas 

p = po (1 + EP’), a = a, (1 + EU’), u = U&U 

J*=a ES’+&), 
4 

t = w, x = u,Tx’ 

In what follows, we shall omit the primes accompanying the dimensionless variables. 
In the new variables the equations of motion and the boundary conditions become 

($+),=o, ($)Q=o, ($),=1++eJ+(E)+ 

*C(n), ($)V=-l +-S(n)+ 

+ eJ+ (E) 

J+ (n, t) + J- (n, t) = 0, J+ (0, t) = v (1 + 6)J- (0, t), n = X/&T) 

We shall associate the characteristic variable E (rl) with the instant of emergence of 
the corresponding characteristic C'(F) from the left (right) boundary. Then, integrating 
the equations for the characteristics we obtain 

The integrals in the expressions for I* are taken along the characteristics El, '1 =ccnst. 
In accordance with the arguments of /5, 6/, the position of the characteristics must be 
determined with an accuracy of order of E and .aa for cases 1 and 2 respectively. We shall 
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seek periodic solutions of the problem of oscillations, assuming that S(<l. 
We shall evaluate the integrals I* using the method of successive approximations, with 

the characteristics x = t - E, x = -t-k 9 f nofthe unperturbed gas as the first approximation. 
It is clear that the integrals 

I,+=iJ-(22-%-n)dz, I,-=~J+(ZT-q-n)dr 
E q 

on the piecewise smooth solutions differ from the texact values of I* by a quantity of order 
0 (9. From this it follows that the equations of the characteristics in which I* have been 
replaced by If, describe in the xt plane the curves deviating from the true characteristics 
of the flow by an amount of the order of O(E*). 

We will use the equations of characteristics in the first approximation to find the next 
approximation to I*. 

After lengthy reduction /5, 6/ we obtain a formulas for determining the time at which 
the characteristic O+ will return to the left boundary after reflection from the right wall: 

for case 1, and 

ebJ* (E) + e”B + 5 (1.3) 

for case 2. 
The above relations together with the constraints 

J (ta) = J (E) (1 + 6) (1.4) 

J (tz) = -J (E) (1 + 6) (1.5) 

which follow from the boundary conditions, form a closed system of equations determining the 
solution of the problem. Here and henceforth the plus sign in J+ will be omitted. We note 
here that in deriving (1.2) and (1.3) we have taken into account the possibility of the 
intersection of the corresponding characteristic with the shock waves of the opposite family 

/5, 6/. 
In the linear approximation, (l-2)-(1.5) have solutions of the form 

J (t) = ei(kln)xt.eet, 0 = (2n)-l In (1 f 6) (1.6) 

k=m for Y = -1, k = m + ‘I, for Y = +l, m is an integer. When S< 0 the solutions 
decay, while when 6> 0 they increase exponentially with time. In the latter case the 
state of rest of the gas is unstable under arbitrarily small perturbations which increase 
in the first approximation, without limit. Actually, after sufficiently long periods the 
non-linear effects begin to manifest themselves, and this may,ingeneral, leadtostabilization 
of the solution. This problem will be discussed below. 

In deriving Eqs.Cl.2) and (1.3) we assumed implicitly that the mean values of all 
quantities averaged over a period are zero. This imposes restrictions on the possible type 
of perturbations, namely they must not, in the mean, cause the gas to depart from its un- 
perturbed state. This assumption can, in principle, be removed by reformulating the boundary 
conditions in an obvious manner. 

2. Investigation of the equations of oscillations. We shall seek periodic 
solutions ofproblems (1.21, (1.4) and (1.31, (1.5) with period M = kn,,n, = n f A, A < 1, 
k = 2 for case 1 and k = 4 for case 2. 

We shall consider each case separately. 
Expanding J(te) in a Taylor series and using the condition of periodicity, we obtain 

from (1.2) and (1.4) an ordinary differential equation which is satisfied by the solution 
sought in the intervals of smoothness 

EA - '/,n (x + 1) EJ (%)I dJ/d% = 6J (5) (2.1) 

This at once yields the constraints: E-6 - A. 
The equation is easily integrable, and when A = 0, its solution, apart from the trivial 

case J 3 0, is a linear function 

J = 26 (% + C)i(n.e (x + 1)) 
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Passing now to case 2, we will use an example given in /5, 6/. From (1.3) it folloWS 
that the instant t2 in which the characteristic C+ returns to the left boundary after passing 
the pipe twice in the forward and reverse direction, is given, to within terms of higher order 
of smallness, by the formula 

t, = % + 4nk + ZE~ICLJ~(%) + j31 

The corresponding value of the invariant J is, by virtue of the boundary conditions, 

J @a) = J (5) (1 + QZ 

Expanding the function J(ta) in a Taylor series in the neighbourhood of L's0 = % + 4n, 
we arrive, by virtue of the assumption of its periodicity, at the differential equation 

I4A + 2ePcd2 (E) + 2~731 dJ/dt = 26J (E) (2.2) 

from which we obtain the estimates E'- 6- A. 
Eq.(2.2) can also be integrated simply to give 

(2A + .?fi) In 1 J 1 + e*aJ2/2 = 6t + C 

The resulting transcendental equation can be used to obtain J as a function of t. Now, 

knowing A, the constants of integration, and the positions of the discontinuities, we can use 
the above integrals to construct the solutions of the problem of oscillations, which will be 
continuous or discontinuous. when such an approach is used /l-4/, the rules by which we choose 
the constants of integration and introduce strong discontinuities into the solution, become 
important. Moreover, a question arises in the problem of selfexcited ocillations ofdetermining 
the period of oscillations, or, which is the same, the quantity A. All these problems cannot 
be solved without making some special assumptions. 

In what follows, we shall follow the routes taken in /5, 6/. we recall that these papers 
dealt with a wide class of problems in which the problems of non-linear periodic oscillations 
of a gas in pipes appear as a special case. The successive asymptotic analysisoftheequations 
of motion made it possible to justify correctly the method of introducing strong discontinuities 
into the flow. At the same time, an algorithm was given for constructing the solution by the 
method of evolution. The method is based on the fact that the differential equations of the 
characteristics can, by virtue of the special character of the flow, be integrated, and their 
coordinates (z,t) found at a finite distance from their origin (Eqs.(l.Z) and (1.3)). 

The shock waves form in the flow as a result of the intersection of the characteristics 
of the same family. This corresponds to the appearance of multivaluedness in the profile of 
the corresponding invariant, e.g. in the case of dependence on t for fixed.x. A discontinuity 
in the region where the solution is multivalued is introduced from the condition that the 
areas bounded by the curve J(z, t) lying on the opposite sides of the shock wave, are equal 
/7/. 

The use of this rule for problems of forced oscillations is substantiated in /5, 6/. All 
arguments appearing in these papers are applied unchanged to the class of problems discussed 
in the present paper. Relations (l-2)-(1.5) and the rule formulated above governing the 
introduction of discontinuities into the flow, based on the assumptions made in Sect.1 about 
the character of the perturbations, lead to the integral law of conservation of momentum. 

k*, 

s J (%I d% = 0 
II 

3. Numerical results. The periodic solutions of (1.2)-(1.5) were constructed according 
to the scheme given in /5, 6/. First, a distribution J = J,(g) corresponding to the conditions 

L+r. 

5 J (%I d% = 0, J (%o) = J (Eo + A) (3.1) 

E. 

was specified on the segment [Eo,%,, + i;l(L = kn (for cases 1 and 2 respectively). The initial 
segment was then transformed by (1.2) and (1.3) into [t(&), t(&)fL). If the solution became 
"inverted" in the course of this process, then the shock waves were introduced into the 
regions of multivaluedness using the area rule. The values of J (5) and It(&),t(&,) f Ll were 
found using formulas (1.4) and (1.5). It is clear that the new function constructed on 
[t (E,), t (&J + L1 also satisfies (3.1). The new values of J(E) were continued periodically 
to I%o, Eo + L1 , and theprocess was repeated until the solution was obtained. 

An additional modification was introduced into the above computational scheme. The 
modification was justified by the fact that in the problems discussed up to now, the period 
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of forced oscillations was known in advance, while here it was determined in the course of 
constructing the solution. The convenience of realizing the computational algorithm was the 
factor in favour of solving the inverse problem: the period T = kn, was specified as constant, 
and the length of the pipe n was chosen during the computation so that the numerical solution 
would be of period T. 

The process of correcting the pipe length was carried out as follows. Let the magnitude 
ni from the previous iteration andthecoordinate of some point ti of the solution (such as a 
point at the shock front or one of the zeros of the function) be both known. Now let this 
point have, as a result of the above procedure of transforming the profile of J and its 
periodic continuation, a new coordinate tf. The length of thepipe for carrying out the next 
iteration was assumed to be equal to 

nt = ni - min (Zf - Xi, ZZ~ - 5i + 2?', 5f - zi - ZT)/k 

The initial approximation to n was chosen to be equal to P+ The meaning of such a 
correction process becomes clear by considering formulas (1.2) and (1.3). 

Fig.1 shows the results of the computations for case 1. Here E = ii = 10-1, n, = n. 
The solid line represents the result in the case when the function 

J, (E) = -4 (x + 1)-'sin E (3.2) 

is used as the initial function. 

Fig.1 Fig.2 

The calculations have shown that A = 0. In accordance with the analytic investigations 
carried out in Sect.2, the solution sought consists of two straight lines over a period, 
connected by a shock front, or in other words, it represents a symmetrical N-wave. (me shall 
use this term to characterize the resulting profiles, although in hydrodynamics the term 
usually refers to a solution consisting of two shock waves connected by a straight line 
section). 

The dashed line shows the result of the computation when 

J, = -4 (x + I)-'sin 2E 

We see that here wehave two symmetrical N-waves, which couldbeexpected from the arguments 
of the linear theory (1.6). 

Generally speaking, we have found that an arbitrary initial distribution J, (E) yields 
a solution which can be represented on the segments ('p i- 2nm, v + 2s (m + l))(cp is the phase 
determined by J,,) in the form of a collection of independent, symmetrical N-waves separated 
by segments at rest. However, numerical computations have shown that these solutions are 
unstable under small perturbations. When such perturbations are introduced artificially, they 
merge to give a single N-wave (the solid line in Fig.1). The latter wave is stable under the 
perturbations which result in a phase shift of the solution. A solution with a single N-wave 
was discussed in /13/ in connection with the study of nearly resonant oscillations in a moving 
gas. 

Fig.2 shows the result of computations for case 2 with 6 = ea,rzO = n/2,8 = 0,l (curve I) 
and E = 0,2 (curve 2). We used the same function (3.2) to describe the initial distribution 
for 1 and 2, and the graphs are shown in a single phase. We see that both solutions follow 
each other closely everywhere except in the neighbourhood of the compression wave whose con- 
tinuation for curve 2 is, according to Eq.(1.3), about twice as long as that for curve 1. 
Unlike case 1, here the period of oscillations depends on the amplitude of the solution. 
Computations have shown that A = 0,866e*6, 6 = 4,71 for solution 1;A =0,855@,6 = 4,30 for 
solution 2. The conclusions concerning the nearness of the solutions for different E agree 
with the laws of similitude obtained as a result of the analytic investigation carried out in 
Sect-Z. 

Computations were carried out, aimed at constructing non-linear analogues of (1.6) with 
higher-order harmonics. The results are shown in Fig.2 for the initial function J, = -4(x + 
I)-’ sim 3E, e = 0,l with a dashed line (A = 0,%'6, 6 = 1,s). The solution can be regarded, with 
high accuracy, as stationary over a large number of iterations (the number increases as the 
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number of nodes increases when the discrete approximation to equations (1.3) and (1.5) is used 
in the computational algorithm for the digital computer), but in the end it decomposes and 
transforms into the one represented by the solid line 1 (apart from the phase shift). We 
note that the instability of the high-frequency modes relative to the computational algorithm 
also occurs in case 1. 

It would appear that the solutions obtained can be examined vigorously for stability. 
It is, however, quite clear, e.g. by inspecting the dashed curve of Fig.1, that the violation 
of symmetry of the N-waves in the case when condition 

2% 

s I(4)d5 = 0 
0 

holds, must lead to a merger of two shock waves into a single shock wave, and this means the 
passage to a mode depicted in Fig.1 by the solid line. 

The low-frequency solution shown in Fig.2 by the solid lines is stable with respect to 
the computational scheme, as well as under small perturbations. The latter lead to a phase 
shift in these curves, and the shift is smaller the smaller the perturbation amplitude. 

The author thanks A.N. Kraiko and V.E. Fortova for their interest and support. 
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